Analisis Kemampuan Mahasiswa dalam Menyelesaikan Soal Pembuktian tentang Isomorfisma Grup
PDF

Keywords

student ability
mathematical proof
group isomorphism

Abstract

Group Isomorphism is one of the sub topic in the Algebra Structure. This sub topic required prerequisite material about the bijective function. If this prerequisite material is not mastered, it will be difficult to study Isomorphism Group material. There are still many students who found difficulties to solve probative questions about Group Isomorphism. The major problem are they were forgetting and not understanding the prerequisite material. Therefore, it should be a further research on the ability of students to prove the questions of proof and errors in preparing evidence about Group Isomorphism.
https://doi.org/10.21274/jtm.2019.2.2.111-126
PDF

References

Arikunto, S. (2005). Manajemen Penelitian. Jakarta: PT. Rineka Cipta.

Arikunto, S. (2010). Prosedur Penelitian: Suatu Pendekatan Praktik. Jakarta: PT. Rineka Cipta.

Arnawa, I. M. (2009). Mengembangkan Kemampuan Mahasiswa dalam Memvalidasi Bukti pada Aljabar Abstrak melalui Pembelajaran Berdasarkan Teori APOS. Jurnal Matematika Dan Sains, 14(2).

Asyhar, B. (2015). Studi Pemahaman Bukti dan Pembuktian dalam Geometri Euclid Mahasiswa Jurusan Tadris Matematika IAIN Tulungagung. JPM : Jurnal Pendidikan Matematika, 1(2), 127–135. https://doi.org/10.33474/jpm.v1i2.720

Bogdan, R. C., & Biklen, S. K. (1998). Qualitative Research in Education: An Introduction to Theory and Methods. A Viacom Company: Allyn & Bacon.

Depdiknas. (2001). Kurikulum Berbasis Kompetensi: Mata Pelajaran Matematika. Jakarta: Departemen Pendidikan Nasional.

Polya, G. (1981). Mathematical Discovery: on Understanding, Learning and Teaching Problem Solving. New York: John Willey & Sons, Inc.

Shadiq, F. (2007). Apa dan Mengapa Matematika Begitu Penting? Yogyakarta: P4TK Matematika.

Siswono, T. Y. E. (2010). Penelitian Pendidikan Matematika. Surabaya: Unesa University Press.

Sugiyono. (2012). Memahami Penelitian Kualitatif. Bandung: CV. Alfabeta.

Vanspronsen, H. D. (2008). Proof Processes Of Novice Mathematics Proof Writers. University of Montana, Missoula.

The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Jurnal Tadris Matematika as publisher of the journal. Copyright encompasses rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.

Jurnal Tadris Matematika and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Tadris Matematika are the sole responsibility of their respective authors and advertisers.

 

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Jurnal Tadris Matematika (p-ISSN: 2621-3990, e-ISSN: 2621-4008) by http://ejournal.iain-tulungagung.ac.id/index.php/jtm
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Creative Commons License

Downloads

Download data is not yet available.