Analisis Kesulitan Mahasiswa Pendidikan Matematika dalam Menyelesaikan Masalah Pembuktian Pernyataan Matematika
PDF

Keywords

difficulty
proof
mathematics

Abstract

This study’s aim is to describe mathematics education college students difficulties when doing mathematical proof. This study employs descriptive qualitative methods. This study subjects are 3 mathematic education college students who take real analysis class. The subjects was chosen according to their mathematics proposition proof ability in real analysis. The study was carried out by two step tests, they are written and oral test. Based on the study results we know that: college student with high ability tends to have difficulty in write the information that used to proof in written form, but they still manage to get the right proof; college student with middle ability tends to have difficulty in construct the suitable steps and logics to proof the proposition; and college student with low ability tends to have difficulty in understanding the purpose, meaning, and properties that given by the known proposition in the task. In order to deepen this study results, in the next study, we can employs a standard method to detects difficulty, such as NEA (Newton’s Error Analysis), to find more structured results.
https://doi.org/10.21274/jtm.2018.1.2.175-184
PDF

References

Awi. (2017). Analisis Kesalahan Mahasiswa dalam Membuktikan Proposisi Struktur Aljabar dengan Pemberian Scaffolding Metakognitif. In Seminar Nasional Lembaga Penelitian UNM (Vol. 2, pp. 579–583). Retrieved from http://ojs.unm.ac.id/semnaslemlit/article/view/4102

Güler, G. (2016). The Difficulties Experienced in Teaching Proof to Prospective Mathematics Teachers: Academician Views. Higher Education Studies, 6(1), 145–158. https://doi.org/10.5539/hes.v6n1p145

Hodiyanto, & Susiaty, U. D. (2018). Peningkatan Kemampuan Pembuktian Matematis melalui Model Pembelajaran Problem Posing. MaPan: Jurnal Matematika Dan Pembelajaran, 6(1), 128–137. https://doi.org/10.24252/mapan.2018v6n1a12

Junaedi, I. (2012). Tipe Kesalahan Mahasiswa dalam Menyelesaikan Soal-Soal Geometri Analitik Berdasar Newmans Error Analysis (NEA). Kreano, Jurnal Matematika Kreatif-Inovatif, 3(2), 125–133. https://doi.org/10.15294/KREANO.V3I2.2872

Murtafiah, W., Suprapto, E., & Sanusi. (2017). Pengembangan Bahan Ajar Berorientasi KKNI untuk Penguatan Scientific Approach pada Mata Kuliah Evaluasi dan Proses Pembelajaran Matematika. Jurnal Penelitian Pendidikan, 8(1), 1245–1249. Retrieved from http://ejournal.stkippacitan.ac.id/index.php/jpp/article/view/18

Putri, R. A. (2015). Problematika dalam Pembuktian Pernyataan Menggunakan Prinsip Induksi Matematika serta Alternatif Penyelesaiannya. In Seminar Nasional Matematika Dan Pendidikan Matematika UNY (pp. 913–920). Yogyakarta: Universitas Negeri Yogyakarta. Retrieved from http://seminar.uny.ac.id/semnasmatematika/sites/seminar.uny.ac.id.semnasmatematika/files/banner/PM-130.pdf

Rosita, C. D. (2014). Kemampuan Penalaran dan Komunikasi Matematis: Apa, Mengapa, dan Bagaimana Ditingkatkan pada Mahasiswa. Euclid, 1(1), 33–46. Retrieved from http://www.fkip-unswagati.ac.id/ejournal/index.php/euclid/article/view/2

Sumarno, U. (2010). Berfikir dan Disposisi Matematik: Apa, Mengapa, dan Bagaimana Dikembangkan pada Peserta Didik. Bandung: FPMIPA UPI. Retrieved from https://www.academia.edu/10346582/BERFIKIR_DAN_DISPOSISI_MATEMATIK_APA_MENGAPA_DAN_BAGAIMANA_DIKEMBANGKAN_PADA_PESERTA_DIDIK?auto=download

Sundstrom, T. (2014). Mathematical Reasoning: Writing and Proof. New York: Pearson Education, Inc.

Suwanti, V. (2016). Penggunaan Peta Konsep untuk Meningkatkan Kemampuan Logika Pembuktian Mahasiswa. Jurnal Inspirasi Pendidikan, 6(2), 876–882. https://doi.org/10.21067/jip.v6i2.1326

Utami, N. P., Mukhni, & Jazwinarti. (2014). Kemampuan Penalaran Matematis Siswa Kelas XI IPA SMAN 2 Painan melalui Penerapan Pembelajaran Think Pair Square. Jurnal Pendidikan Matematika, 3(1), 7–12. Retrieved from http://ejournal.unp.ac.id/students/index.php/pmat/article/view/1212

The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Jurnal Tadris Matematika as publisher of the journal. Copyright encompasses rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.

Jurnal Tadris Matematika and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Tadris Matematika are the sole responsibility of their respective authors and advertisers.

 

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Jurnal Tadris Matematika (p-ISSN: 2621-3990, e-ISSN: 2621-4008) by http://ejournal.iain-tulungagung.ac.id/index.php/jtm
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Creative Commons License

Downloads

Download data is not yet available.