Peran Berpikir Intuitif dan Analitis dalam Memecahkan Masalah Matematika

Muniri Muniri


Intuition has a big role when the analytic (formal) thinking process does not have the ability to reach it to the problems at hand. The presence of this intuition is spontaneous, immediate and sudden, and sometimes unpredictable. However, its presence is not suddenly but supported by the knowledge and experience, skills and skills possessed, through perceptions and feelings. In this context, intuition serves to facilitate the realm of the mind and makes it easy to understand and solve problems (red mathematical problems) in addition to the role of analytical and formal thinking is also required. Thus, intuition can be a means of opening the gates of ideas or ideas of solution discovery before formal steps are done analytically. The author seeks to illustrate the frameworks of these two forms of thinking (intuitive-analytical) inseparable from one another, but they give benefit from each other in the cycle of mathematical problem-solving.


intuition; understanding; solving math problems


Baylor, A. L. (2001). A U-Shaped Model for the Development of Intuition by Expertise. New Ideas in Psichology, 19(3), 237–244.

Bunge, M. A. (2010). Metter and Mind: A Philosophical Inquiry. New York: Springer.

Burton, L. (1999). Why is Intuition so Important to Mathematicians but Missing from Mathematics Education? For the Learning of Mathematics, 19(3), 27–32.

Dane, E., & Pratt, M. G. (2007). Eksploring Intuition and Its Role in Managerial Decision Making. Academy of Management Review, 32(1), 33–54.

Fischbein, E. (1983). Intuition and Analytical Thinking in Mathematics Education. International Reviews on Mathematical Education, 15(2), 68–74.

Fischbein, E., & Barash, A. (1993). Algoritmic Models and Their Misure in Solving Algebraic Problems. Proceeding of PME 17, 1, 162–172.

Hinden, G. (2004). Intuition and its Role in Strategic Thinking. BI Norwegian School of Management, Norwegia.

Jones, K. (1998). Deductive and Intuitive Approaches to Solving Geometrical Problems. National Institute of Education, 19(2), 161–164.

Klein, G. (2002). The Power of Intuition: Mendayagunakan Intuisi untuk Meningkatkan Kualitas Keputusan di Tempat Kerja. Jakarta: Gramedia.

Marsigit. (2012). Peran Intuisi Dalam Matematika menurut Immanuel Kant. Prosiding Seminar Nasional Pendidikan Matematika.

Muniri. (2014). Karakteristik Berpikir Intuitif Siswa bergaya Kognitif FD dan FI dalam Menyelesaikan Masalah Geometri. Universitas Negeri Surabaya.

Sa’o, S. (2016). Berpikir Intuitif sebagai Solusi Mengatasi Rendahnya Prestasi Belajar Matematika. Jurnal Review Pembelajaran Matematika, 1(1).

Stanic, G. M. A., & Kalpatrik, J. (1988). Historical Perspectives on Problem Solving in the Mathematics Curriculum. National Council of Teachers Mathematics (NCTM), 1–22.

Sukmana, A. (2011). Intuisi dalam Bermatematika: Fakta dan Implementasinya Pada Pembelajaran Matematika. Prosiding Seminar Nasional Pendidikan Matematika STKIP Siliwangi Bandung.

Waks, L. J. (2006). Intuition in Education:Teaching and Learning Without Thinking. Dalam D. Vokey (Ed.). Philosophy of Education, 379–388.

Zeev, T. B., & Star, J. (2002). Intuitive mathematics: Theoretical and educational implications, 29–56.

Full Text: PDF


  • There are currently no refbacks.

Editorial Office:

Jurusan Tadris Matematika, Fakultas Tarbiyah dan Ilmu Keguruan (FTIK), Institut Agama Islam Negeri (IAIN) Tulungagung
Jl. Mayor Sujadi Timur No. 46 Tulungagung, Phone (+62) 355 321513, Faximile (+62) 355 321656
e-mail:  /


Jurnal Tadris Matematika Indexed by:


Jurnal Tadris Matematika (p-ISSN: 2621-3990, e-ISSN: 2621-4008) by
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Creative Commons License